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Abstract. Two photon calcium imaging (TPCI) is a relatively new and
very promising technique for in vivo imaging of the structure and func-
tion of neural populations. However, the data processing methodology
for TPCI is underdeveloped. This presents an opportunity for statistics
and machine learning to contribute substantively to basic neuroscience
by providing a principled analysis pipeline that can be used by exper-
imenters. We present here a procedure for automating the detection of
cells in TPC images. Our procedure consists of an unsupervised multi-
scale blob detector to generate candidate cell masks, and a minimally
supervised Random Forest classifier to verify or discard the candidates.
Our procedure improves on existing techniques, requiring minimal su-
pervision, adapting to spatial inhomogeneities, and applying generally
over cell types and animals.

1 Introduction

Two-photon calcium imaging (TPCI) is an increasingly popular in vivo
fluorescence imaging technique [1-4]. Through the use of a two photon
laser scanning microscope to image tissue containing a calcium responsive
functional indicator as well as a static structural dye, TPCI can reveal
the location, size, shape, and activity of neurons, astrocytes and blood
vessels. From this, experimenters can deduce neural spike trains [5,6], cal-
cium transients in astrocytes [7-9], properties of local blood flow [10], and
connectivity of the local neural network [11]. TPCI gives more compre-
hensive measurements of cortical function than other recording techniques
with similar spatial scale and is therefore ideal for studying integrative
questions in basic neuroscience.

Despite the promise of TPCI for experimental neuroscience, appro-
priate processing methodology is still in its infancy. Only recently have
problems started to be addressed such as motion correction [12-14], seg-
mentation of regions of interest [15-18], integration of fluorescence over



regions of interest [13], and inference of spike trains [1, 2,5, 6]. Here we
address the second of these problems: the segmentation of TPCI images
to identify cells.

Typically, TPCI can be viewed as videos of fluorescence over time
in a particular plane of cortex. The current standard is to segment these
images roughly by hand or with ad-hoc semi-manual tools. This is tedious
for the experimenter, and not standardizable between labs. Automated
segmentation will reduce the tedium of manual annotation, and may also
increase precision by using a richer representation of the data than can
be provided to a human.

Two groups have recently proposed automated techniques for this
task. Mukamel et. al. [17] proposed a procedure based on spatio-temporal
ICA. Their approach relies strongly on sparse fluorescence transients in
order to detect a cell and can therefore only detect active neurons. Valmi-
anski and colleagues [16] proposed a two-stage supervised classifier. They
first use data manually annotated on the pixel level to classify pixels as
part of a cell or not, and then classify groups of pixels as either true cells
or false positives. This approach has the advantage of being able to seg-
ment any cell, but suffers from a need for training data annotated on the
pixel level (which is tedious and unreliable). We propose a procedure that
follows the two-stage model of [16] but requires significantly less training
data by virtue of using an unsupervised multi-scale blob detector to gen-
erate candidate cell masks. We then select the appropriate masks using a
Random Forest classifier trained on a rich feature set and constrained by
graph relationships between masks. Our method is:

— spatially adaptive in the face of uneven dye and cell distribution.
— minimally supervised, requiring little training data.

— general between animals, but easily retrained if needed.

— able to segment any cell type, regardless of (in)activity.

2 Analysis Method

Our algorithm takes as input data of the form Fy, ,; where the value
at (d,x,y,t) is a measurement of the fluorescence of dye d at location
(z,y) at time ¢t. The goal is to output a set of masks M, where each mask
identifies the pixels that sample from a particular cell. In the data used for
this paper there are two dyes (one functional showing calcium transients
in cells and one structural differentiating types of cells), several thousand
time points per recording session, and a spatial resolution of 128x128
pixels covering an area of 240x240 microns.



2.1 Stage 1: candidate mask generation

The first stage of our algorithm is unsupervised and generates a structured
set of candidate cell masks. In this preliminary work, we generate these
masks from the time-averaged data from the functional dye. Let F,, =
%Zthl Fy« 2yt be the time averaged image where d* is the index of a
dye.

Cells are characterized by regions of locally increased fluorescence. We
use a Laplacian-of-Gaussian (LoG) multi-scale blob detector to identify
these regions. Using a multi-scale approach is critical due to spatial vari-
ations in fluorescence intensity and in the size and spacing of cells (see
figure 2).

We first smooth the image Fj, with a sequence of Gaussian kernels
with scales s € 5, ranging from no smoothing to over-smoothing. Let
F, , s be this set of smoothed images. We then convolve each smoothed
image with a 3-by-3 kernel K which approximates the Laplacian oper-
ator. Since cells are characterized by locally high fluorescence, we select
the pixels of the resulting image with negative values as belonging to
candidate cell masks. Let the binary images Ffbs indicate these pixels.

Finally, we segment the regions selected by the LoG procedure into
individual cells. We take the set of local maxima in a smoothed image
to be the set of candidate cells ¢; at that level of smoothing. For high
levels of smoothing there will be very few local maxima, whereas for no
smoothing there may be several hundred. We assign each non-zero pixel
of F! to the candidate cell (local maxima) that is the termination of a
simple hill-climbing process on F' ’ s

With reasonable step sizes between smoothing levels, it is possible
to trace each local maxima through scale space. For this we use a two-
dimensional adaptation of the mode tree methodology described in [19].
To summarize, in the maximally smoothed image F..,, there will be a
set of local maxima ¢y, where n is typically very small. We assign each
of these maxima a unique ID. At the next lower smoothing level, there
will be another set of local maxima ¢; _,, where m > n. Each of the
original n maxima can be matched with one of the m maxima, and the
appropriate ID transferred. Any remaining maxima from the larger set
receive unique IDs. Each new maxima may, in addition, be assigned a
parent by hill-climbing from its location in F._ ..

At this point, we have a tree structured collection of candidate cell
masks M, indexed by cell ID ¢ and smoothing level s. A particular
¢ identifies a set of up to |S| masks, though only a small number of
candidate cells will exist at all smoothing levels.



2.2 Stage 2: mask selection

The first stage of our procedure gives us a structured set of candidate cell
masks M. . The majority of these candidate masks should be rejected
(in a typical dataset, less than half a percent of the candidate masks are
correct). Let G(M,s) be a goodness measure for M., indicating how
strongly we believe it to be correct. We wish to choose zero or one mask
for each candidate cell. Let L = [ly,...,l¢] be the vector whose elements
are zero or an integer giving the smoothing index of the selected map for
each cell c. We aim to select

C
L =argmax Y G(My,) (1)

c=1

subject to constraints that L respect the parent-child structure of the
set of masks (if a child is selected, the chosen smoothing level for its
parent must be below that at which the child originates), and that each
selected mask has a sufficiently large goodness value. This is a complex
optimization problem, but an approximation that works well in practice is
to solve the trivial unconstrained problem and then enforce the goodness
threshold and parent-child relationships post hoc.
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Fig. 1. The set of features used in our Random Forest classifier to calculate the good-
ness of masks. The plot shows the Mean Decrease Gini (MDG) importance values.
Notably, these features include both properties of the mask itself (A,C,D,M), prop-
erties of the time-averaged data from multiple dyes (B,E-H,K), and properties of the
time series from the functional dye (I,J,L). This is a richer summary of the data than
what is typically available to a human annotator.



We use a the estimated class probabilities from a Random Forest
classifier [20] to estimate G(M,. ). The Random Forest classifier is fast and
performs well in the face of extremely unbalanced class frequencies and
weakly predictive features without known class conditional distributions.
As input to the classifier, we use features that describe both the shape of
the mask itself as well as the data covered by the mask. We find that both
classes of features contribute significantly to performance. The specific
features used in this paper are shown in figure 1, though a strength of
our method is that additional features appropriate to the situation can
easily be added.

2.3 Application: Rat Somatosensory Cortex

To demonstrate our procedure we use data collected from rat somatosen-
sory cortex. To reduce the effects of brain motion during in vivo imaging
we align the images in each imaging session using rigid-body translation
with correlation based estimates of offset. To remove some of the effect of
out-of-plane brain motion (which is primarily driven by respiration and is
highly periodic), we apply a high order autoregressive filter to each pixel
in the aligned images.

Fig. 2. The output of our completely automated procedure on a dataset from a differ-
ent animal than those used for training. Left is the time averaged image. Right is the
equalized version created using a windowed histogram equalization algorithm. Center
is the final results of the algorithm with each mask colored arbitrarily. Desirable prop-
erties of this segmentation include that cells are detected both in the bright central
region and in the dimmer periphery. In addition, many closely spaced cells are success-
fully separated. Some errors made in this segmentation include missed cells and some
closely spaced cells which are not successfully separated.

For this preliminary work we train our second stage classifier using
annotated mask sets from two imaging sessions in one animal (a total of



74 cells). With a custom tool, annotation at the mask level was not time
consuming. Figure 2 shows an example of the output of our procedure
applied to data from a different animal.

One major challenge of this work is evaluation. There are no stan-
dard, carefully hand labeled data sets for comparison. There is no stan-
dard method for generating simulated data. We are considering ways to
improve this situation. In the meantime, we informally evaluated, on the
pixel level, performance on 20 recording sessions from several animals.
Our procedure output acceptable masks for about 80% of the cells, with
an additional 5% of cells receiving masks with some small problems. Im-
portantly, many of the errors stemmed from failing to generate a correct
mask in the first stage of our procedure. This is expected since for this
preliminary work we only used one channel and one mask generation
method. We expect better performance in future work using all the data
available to generate masks.

3 Discussion

We presented here a procedure for automated segmentation of cells in
two-photon calcium imaging. The first stage of the procedure uses a multi-
scale blob detector to generate a structured set of candidate masks. This
is completely unsupervised, and can handle spatially uneven fluorescence
intensity and cell distribution. The second stage of our procedure uses a
supervised Random Forest to select the appropriate masks. This stage of
our procedure performs well by using a rich representation of the mask
properties, and the tree structure of the candidate mask set.

There are many improvements to be made to this procedure. We use
a rich feature set for our second stage classifier, but we currently use only
the time-averaged data from a single dye as input to our blob detector.
Using a richer representation of the data throughout the procedure would
no doubt improve performance. In addition, there are a practically un-
limited number of additional features that could be added. Finally, it is
important to evaluate the performance of our procedure in an unbiased,
perhaps by comparing it to careful manual segmentations from several ex-
perts. Nevertheless, our procedure improves upon existing methods used
in the field. It can segment cells regardless of their type or (in)activity,
and it requires very minimal training data allowing easy adaptation to
different animal types, brain regions, or experimental parameters.
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